Recent AI development has shown several groundbreaking inventions, from ChatGPT to the Action Transformer model. However, Generative Adversarial Networks (GAN) is a particularly significant development in machine learning that has captured the attention of researchers and industry professionals alike. GANs use powerful deep learning methods, such as convolutional neural networks, to learn the underlying patterns and regularities of a given dataset and use that knowledge to create new synthetic examples that are indistinguishable from the real ones. The generator model takes random input and generates a new example that resembles to the original dataset, whereas the discriminator model evaluates whether an example is real or fake. The two models are trained in a zero-sum game, where the generator tries to produce more realistic samples to fool the discriminator while the discriminator tries to differentiate between real and fake samples. The process continues until the generator can produce realistic samples that are indistinguishable from the real ones.
One of the most impressive features of Generative Adversarial Networks is their ability to generate photorealistic images and videos. They have been used successfully in various image-to-image translation tasks, such as converting day-to-night or winter-to-summer scenes. They are also used in generating photorealistic images of objects, scenes, and people that are difficult to distinguish from real images. This has significant implications for fields such as advertising, entertainment, and gaming, where creating high-quality content is crucial.
To read more – https://www.leewayhertz.com/generative-adversarial-networks/